skip to main content


Search for: All records

Creators/Authors contains: "Kim, Doowon"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Decompilation is a crucial capability in forensic analysis, facilitating analysis of unknown binaries. The recent rise of Python malware has brought attention to Python decompilers that aim to obtain source code representation from a Python binary. However, Python decompilers fail to handle various binaries, limiting their capabilities in forensic analysis. This paper proposes a novel solution that transforms a decompilation error-inducing Python binary into a decompilable binary. Our key intuition is that we can resolve the decompilation errors by transforming error-inducing code blocks in the input binary into another form. The core of our approach is the concept of Forensically Equivalent Transformation (FET) which allows non-semantic preserving transformation in the context of forensic analysis. We carefully define the FETs to minimize their undesirable consequences while fixing various error-inducing instructions that are difficult to solve when preserving the exact semantics. We evaluate the prototype of our approach with 17,117 real-world Python malware samples causing decompilation errors in five popular decompilers. It successfully identifies and fixes 77,022 errors. Our approach also handles anti-analysis techniques, including opcode remap- ping, and helps migrate Python 3.9 binaries to 3.8 binaries. 
    more » « less
    Free, publicly-accessible full text available July 1, 2024
  2. null (Ed.)
  3. null (Ed.)